This documentation is automatically generated by online-judge-tools/verification-helper
演算で全て mod を取る整数型。mod の除算などで何も考えないで済む。
pow(x)
: x
乗inverse()
: mod上の逆元pow(x)
: $O(log\ n)$inverse()
: $O(log\ mod)$#pragma once
#include "../template/template.cpp"
#include "math/extgcd.cpp"
template <int MOD>
struct mint {
int32_t n;
mint() : n(0) {}
mint(ll x) : n(x >= 0 ? x % MOD : (MOD - (-x) % MOD) % MOD) {}
mint &operator+=(const mint &p) {
if ((n += p.n) >= MOD) n -= MOD;
return *this;
}
mint &operator-=(const mint &p) {
if ((n += MOD - p.n) >= MOD) n -= MOD;
return *this;
}
mint &operator*=(const mint &p) {
n = 1ll * n * p.n % MOD;
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inverse();
return *this;
}
mint operator-() const { return mint(-n); }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const { return n == p.n; }
bool operator!=(const mint &p) const { return n != p.n; }
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.n;
}
friend istream &operator>>(istream &is, mint &p) {
int x;
is >> x;
p = mint(x);
return is;
}
mint pow(int64_t x) const {
mint res(1), mul(n);
while (x > 0) {
if (x & 1) res *= mul;
mul *= mul;
x >>= 1;
}
return res;
}
mint inverse() const {
return mint(modinv(n,MOD));
}
};
/*
@brief mod int
@docs docs/modint.md
*/
#line 2 "template/template.cpp"
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define rep(i, n) for (int i = 0; i < n; i++)
#define REP(i, n) for (int i = 1; i < n; i++)
#define rev(i, n) for (int i = n - 1; i >= 0; i--)
#define REV(i, n) for (int i = n - 1; i > 0; i--)
#define all(v) v.begin(), v.end()
#define PL pair<ll, ll>
#define PI pair<int, int>
#define pi acos(-1)
#define len(s) (int)s.size()
#define compress(v) \
sort(all(v)); \
v.erase(unique(all(v)), v.end());
#define comid(v, x) lower_bound(all(v), x) - v.begin()
template<class T>
using prique=priority_queue<T,vector<T>,greater<>>;
template <class T, class U>
inline bool chmin(T &a, U b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T, class U>
inline bool chmax(T &a, U b) {
if (a < b) {
a = b;
return true;
}
return false;
}
constexpr ll inf = 3e18;
#line 3 "math/extgcd.cpp"
ll extGCD(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1;
y = 0;
return a;
}
ll d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
ll modinv(ll a, ll m) {
ll x, y;
extGCD(a, m, x, y);
return (x % m + m) % m;
}
#line 4 "math/modint.cpp"
template <int MOD>
struct mint {
int32_t n;
mint() : n(0) {}
mint(ll x) : n(x >= 0 ? x % MOD : (MOD - (-x) % MOD) % MOD) {}
mint &operator+=(const mint &p) {
if ((n += p.n) >= MOD) n -= MOD;
return *this;
}
mint &operator-=(const mint &p) {
if ((n += MOD - p.n) >= MOD) n -= MOD;
return *this;
}
mint &operator*=(const mint &p) {
n = 1ll * n * p.n % MOD;
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inverse();
return *this;
}
mint operator-() const { return mint(-n); }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const { return n == p.n; }
bool operator!=(const mint &p) const { return n != p.n; }
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.n;
}
friend istream &operator>>(istream &is, mint &p) {
int x;
is >> x;
p = mint(x);
return is;
}
mint pow(int64_t x) const {
mint res(1), mul(n);
while (x > 0) {
if (x & 1) res *= mul;
mul *= mul;
x >>= 1;
}
return res;
}
mint inverse() const {
return mint(modinv(n,MOD));
}
};
/*
@brief mod int
@docs docs/modint.md
*/