This documentation is automatically generated by online-judge-tools/verification-helper
Convex Hull Trick の Li Chao Treeで実装したバージョン
add(a,b,l)
: 登録した $x$ 座標の $[a,b)$ に線分 $l$ を追加query(a)
: 登録した $x$ 座標の $a$ 番目を含む線分の $y$ 座標の最小値 (線分が存在しない場合はinf)add(a,b,l)
: $O(log^2\ N)$query(a)
: $O(log\ N)$#pragma once
#include "../template/template.cpp"
template <class T>
struct LiChaoTree {
struct L {
T a, b;
L(T a, T b) : a(a), b(b) {}
bool operator==(L l) { return a == l.a && b == l.b; };
};
T f(L line, T x) {
return line.a * x + line.b;
}
ll size = 1;
L ini = {0, inf};
vector<L> dat;
vector<T> X;
void add(ll a, ll b, L li, ll k = 0, ll l = 0, ll r = -1) {
if (r == -1) r = size;
if (r <= a || b <= l) return;
ll m = (l + r) / 2;
if (!(a <= l && r <= b)) {
add(a, b, li, 2 * k + 1, l, m);
add(a, b, li, 2 * k + 2, m, r);
return;
}
if (dat[k] == ini) {
dat[k] = li;
return;
}
ll lx = X[l], mx = X[m], rx = X[r - 1];
bool left = f(li, lx) < f(dat[k], lx);
bool mid = f(li, mx) < f(dat[k], mx);
bool right = f(li, rx) < f(dat[k], rx);
if (left && right) {
dat[k] = li;
return;
}
if (!left && !right) return;
if (mid) swap(li, dat[k]);
if (left != mid) {
add(a, b, li, 2 * k + 1, l, m);
} else {
add(a, b, li, 2 * k + 2, m, r);
}
}
T query(ll a, ll k = 0, ll l = 0, ll r = -1) {
if (r == -1) r = size;
if (r - l == 1) return f(dat[k], X[a]);
if (a < (l + r) / 2)
return min(query(a, k * 2 + 1, l, (l + r) / 2), f(dat[k], X[a]));
else
return min(query(a, k * 2 + 2, (l + r) / 2, r), f(dat[k], X[a]));
}
LiChaoTree(vector<T> v) : X(v) {
ll N = len(v);
while (size < N) size *= 2;
dat.resize(size * 2 - 1, ini);
X.resize(size * 2 - 1, 1e9);
}
};
/*
@brief Li Chao Tree (Convex Hull Trick)
@docs docs/LiChaoTree.md
*/
#line 2 "template/template.cpp"
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define rep(i, n) for (int i = 0; i < n; i++)
#define REP(i, n) for (int i = 1; i < n; i++)
#define rev(i, n) for (int i = n - 1; i >= 0; i--)
#define REV(i, n) for (int i = n - 1; i > 0; i--)
#define all(v) v.begin(), v.end()
#define PL pair<ll, ll>
#define PI pair<int, int>
#define pi acos(-1)
#define len(s) (int)s.size()
#define compress(v) \
sort(all(v)); \
v.erase(unique(all(v)), v.end());
#define comid(v, x) lower_bound(all(v), x) - v.begin()
template<class T>
using prique=priority_queue<T,vector<T>,greater<>>;
template <class T, class U>
inline bool chmin(T &a, U b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T, class U>
inline bool chmax(T &a, U b) {
if (a < b) {
a = b;
return true;
}
return false;
}
constexpr ll inf = 3e18;
#line 3 "structure/LiChaoTree.cpp"
template <class T>
struct LiChaoTree {
struct L {
T a, b;
L(T a, T b) : a(a), b(b) {}
bool operator==(L l) { return a == l.a && b == l.b; };
};
T f(L line, T x) {
return line.a * x + line.b;
}
ll size = 1;
L ini = {0, inf};
vector<L> dat;
vector<T> X;
void add(ll a, ll b, L li, ll k = 0, ll l = 0, ll r = -1) {
if (r == -1) r = size;
if (r <= a || b <= l) return;
ll m = (l + r) / 2;
if (!(a <= l && r <= b)) {
add(a, b, li, 2 * k + 1, l, m);
add(a, b, li, 2 * k + 2, m, r);
return;
}
if (dat[k] == ini) {
dat[k] = li;
return;
}
ll lx = X[l], mx = X[m], rx = X[r - 1];
bool left = f(li, lx) < f(dat[k], lx);
bool mid = f(li, mx) < f(dat[k], mx);
bool right = f(li, rx) < f(dat[k], rx);
if (left && right) {
dat[k] = li;
return;
}
if (!left && !right) return;
if (mid) swap(li, dat[k]);
if (left != mid) {
add(a, b, li, 2 * k + 1, l, m);
} else {
add(a, b, li, 2 * k + 2, m, r);
}
}
T query(ll a, ll k = 0, ll l = 0, ll r = -1) {
if (r == -1) r = size;
if (r - l == 1) return f(dat[k], X[a]);
if (a < (l + r) / 2)
return min(query(a, k * 2 + 1, l, (l + r) / 2), f(dat[k], X[a]));
else
return min(query(a, k * 2 + 2, (l + r) / 2, r), f(dat[k], X[a]));
}
LiChaoTree(vector<T> v) : X(v) {
ll N = len(v);
while (size < N) size *= 2;
dat.resize(size * 2 - 1, ini);
X.resize(size * 2 - 1, 1e9);
}
};
/*
@brief Li Chao Tree (Convex Hull Trick)
@docs docs/LiChaoTree.md
*/