This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/7/DPL/5/DPL_5_E"
#include "math/Combination.cpp"
int main(){
cin.tie(0);ios::sync_with_stdio(false);
const int mod=1e9+7;
Combination<mod>C;
int n,k;cin>>n>>k;
cout<<C.nCk(k,n)<<"\n";
}
#line 1 "test/Combination.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/7/DPL/5/DPL_5_E"
#line 2 "template/template.cpp"
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define rep(i, n) for (int i = 0; i < n; i++)
#define REP(i, n) for (int i = 1; i < n; i++)
#define rev(i, n) for (int i = n - 1; i >= 0; i--)
#define REV(i, n) for (int i = n - 1; i > 0; i--)
#define all(v) v.begin(), v.end()
#define PL pair<ll, ll>
#define PI pair<int, int>
#define pi acos(-1)
#define len(s) (int)s.size()
#define compress(v) \
sort(all(v)); \
v.erase(unique(all(v)), v.end());
#define comid(v, x) lower_bound(all(v), x) - v.begin()
template<class T>
using prique=priority_queue<T,vector<T>,greater<>>;
template <class T, class U>
inline bool chmin(T &a, U b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T, class U>
inline bool chmax(T &a, U b) {
if (a < b) {
a = b;
return true;
}
return false;
}
constexpr ll inf = 3e18;
#line 3 "math/extgcd.cpp"
ll extGCD(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1;
y = 0;
return a;
}
ll d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
ll modinv(ll a, ll m) {
ll x, y;
extGCD(a, m, x, y);
return (x % m + m) % m;
}
#line 4 "math/modint.cpp"
template <int MOD>
struct mint {
int32_t n;
mint() : n(0) {}
mint(ll x) : n(x >= 0 ? x % MOD : (MOD - (-x) % MOD) % MOD) {}
mint &operator+=(const mint &p) {
if ((n += p.n) >= MOD) n -= MOD;
return *this;
}
mint &operator-=(const mint &p) {
if ((n += MOD - p.n) >= MOD) n -= MOD;
return *this;
}
mint &operator*=(const mint &p) {
n = 1ll * n * p.n % MOD;
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inverse();
return *this;
}
mint operator-() const { return mint(-n); }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const { return n == p.n; }
bool operator!=(const mint &p) const { return n != p.n; }
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.n;
}
friend istream &operator>>(istream &is, mint &p) {
int x;
is >> x;
p = mint(x);
return is;
}
mint pow(int64_t x) const {
mint res(1), mul(n);
while (x > 0) {
if (x & 1) res *= mul;
mul *= mul;
x >>= 1;
}
return res;
}
mint inverse() const {
return mint(modinv(n,MOD));
}
};
/*
@brief mod int
@docs docs/modint.md
*/
#line 3 "math/Combination.cpp"
template <int MOD>
struct Combination {
using modint = mint<MOD>;
vector<modint> perm, inv;
Combination(int x = 1e6) {
perm.resize(x);
inv.resize(x);
perm[0] = modint(1);
REP(i, x + 1)
perm[i] = perm[i - 1] * i;
inv[x] = perm[x].pow(MOD - 2);
for (int i = x - 1; i >= 0; i--) {
inv[i] = inv[i + 1] * (i + 1);
}
}
modint nCk(int x, int y) {
if (x < y) return modint(0);
return perm[x] * inv[x - y] * inv[y];
}
};
/*
@brief Combination (nCk)
@docs docs/Combination.md
*/
#line 4 "test/Combination.test.cpp"
int main(){
cin.tie(0);ios::sync_with_stdio(false);
const int mod=1e9+7;
Combination<mod>C;
int n,k;cin>>n>>k;
cout<<C.nCk(k,n)<<"\n";
}