This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include "../structure/SegmentTree.cpp"
#include "../math/modint.cpp"
constexpr int mod=998244353;
using modint=mint<mod>;
using PM=pair<modint,modint>;
auto f=[](modint a,modint b,int sz)->modint{return a+b;};
auto g=[](modint a,PM b,int sz)->modint{return a*b.first+b.second*modint(sz);};
auto h=[](PM a,PM b,int sz)->PM{return PM(a.first*b.first,a.second*b.first+b.second);};
int main(){
cin.tie(0);ios::sync_with_stdio(false);
int N,Q;
cin>>N>>Q;
Segtree<modint,PM,f,g,h>segtree(N,0,PM(1,0));
rep(i,N){
int a;cin>>a;
segtree.update(i,i+1,PM(1,a));
}
while(Q--){
int t;cin>>t;
if(!t){
int l,r,b,c;cin>>l>>r>>b>>c;
segtree.update(l,r,PM(b,c));
}else {
int l,r;cin>>l>>r;
cout<<segtree.query(l,r)<<"\n";
}
}
}
#line 1 "test/SegmentTree.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#line 2 "template/template.cpp"
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define rep(i, n) for (int i = 0; i < n; i++)
#define REP(i, n) for (int i = 1; i < n; i++)
#define rev(i, n) for (int i = n - 1; i >= 0; i--)
#define REV(i, n) for (int i = n - 1; i > 0; i--)
#define all(v) v.begin(), v.end()
#define PL pair<ll, ll>
#define PI pair<int, int>
#define pi acos(-1)
#define len(s) (int)s.size()
#define compress(v) \
sort(all(v)); \
v.erase(unique(all(v)), v.end());
#define comid(v, x) lower_bound(all(v), x) - v.begin()
template<class T>
using prique=priority_queue<T,vector<T>,greater<>>;
template <class T, class U>
inline bool chmin(T &a, U b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T, class U>
inline bool chmax(T &a, U b) {
if (a < b) {
a = b;
return true;
}
return false;
}
constexpr ll inf = 3e18;
#line 3 "structure/SegmentTree.cpp"
template <typename Monoid,
typename OperatorMonoid,
Monoid (*f)(Monoid, Monoid, int),
Monoid (*g)(Monoid, OperatorMonoid, int),
OperatorMonoid (*h)(OperatorMonoid, OperatorMonoid, int)>
struct Segtree {
int size = 1;
private:
vector<Monoid> dat;
vector<OperatorMonoid> lazy;
Monoid M;
OperatorMonoid OM;
public:
void eval(int k, int l, int r) {
if (lazy[k] != OM) {
dat[k] = g(dat[k], lazy[k], r - l);
if (r - l > 1) {
lazy[(k << 1) + 1] = h(lazy[(k << 1) + 1], lazy[k], r - l);
lazy[(k << 1) + 2] = h(lazy[(k << 1) + 2], lazy[k], r - l);
}
lazy[k] = OM;
}
}
void update(int a, int b, OperatorMonoid M, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
eval(k, l, r);
if (r <= a || b <= l) return;
if (a <= l && r <= b) {
lazy[k] = h(lazy[k], M, r - l);
eval(k, l, r);
return;
}
update(a, b, M, (k << 1) + 1, l, (l + r) >> 1);
update(a, b, M, (k << 1) + 2, (l + r) >> 1, r);
dat[k] = f(dat[(k << 1) + 1], dat[(k << 1) + 2], r - l);
}
Monoid query(int a, int b, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
eval(k, l, r);
if (r <= a || b <= l) return M;
if (a <= l && r <= b) return dat[k];
Monoid lv = query(a, b, (k << 1) + 1, l, (l + r) >> 1);
Monoid rv = query(a, b, (k << 1) + 2, (l + r) >> 1, r);
return f(lv, rv, r - l);
}
template <class C>
int minLeft(int a, int b, C &check, Monoid x, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
eval(k, l, r);
if (r <= a || b <= l || !check(dat[k], x)) return -1;
if (r - l == 1) return l;
int lv = minLeft(a, b, check, x, (k << 1) + 1, l, (l + r) >> 1);
if (lv != -1) return lv;
return minLeft(a, b, check, x, (k << 1) + 2, (l + r) >> 1, r);
}
template <class C>
int maxRight(int a, int b, C &check, Monoid x, int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
eval(k, l, r);
if (r <= a || b <= l || !check(dat[k], x)) return -1;
if (r - l == 1) return l;
int rv = maxRight(a, b, check, x, (k << 1) + 2, (l + r) >> 1, r);
if (rv != -1) return rv;
return maxRight(a, b, check, x, (k << 1) + 1, l, (l + r) >> 1);
}
void set(int a, Monoid x) {
dat[a + size - 1] = x;
}
void init(int k = 0, int l = 0, int r = -1) {
if (r == -1) r = size;
if (r - l == 1) return;
init((k << 1) + 1, l, (l + r) >> 1);
init((k << 1) + 2, (l + r) >> 1, r);
dat[k] = f(dat[k * 2 + 1], dat[k * 2 + 2], r - l);
}
Segtree(int x, Monoid M, OperatorMonoid OM)
: M(M), OM(OM) {
while (size < x) size <<= 1;
dat.resize((size << 1) - 1, M);
lazy.resize((size << 1) - 1, OM);
}
};
/*
@brief Lazy Segment Tree
@docs docs/SegmentTree.md
*/
#line 3 "math/extgcd.cpp"
ll extGCD(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1;
y = 0;
return a;
}
ll d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
ll modinv(ll a, ll m) {
ll x, y;
extGCD(a, m, x, y);
return (x % m + m) % m;
}
#line 4 "math/modint.cpp"
template <int MOD>
struct mint {
int32_t n;
mint() : n(0) {}
mint(ll x) : n(x >= 0 ? x % MOD : (MOD - (-x) % MOD) % MOD) {}
mint &operator+=(const mint &p) {
if ((n += p.n) >= MOD) n -= MOD;
return *this;
}
mint &operator-=(const mint &p) {
if ((n += MOD - p.n) >= MOD) n -= MOD;
return *this;
}
mint &operator*=(const mint &p) {
n = 1ll * n * p.n % MOD;
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inverse();
return *this;
}
mint operator-() const { return mint(-n); }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const { return n == p.n; }
bool operator!=(const mint &p) const { return n != p.n; }
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.n;
}
friend istream &operator>>(istream &is, mint &p) {
int x;
is >> x;
p = mint(x);
return is;
}
mint pow(int64_t x) const {
mint res(1), mul(n);
while (x > 0) {
if (x & 1) res *= mul;
mul *= mul;
x >>= 1;
}
return res;
}
mint inverse() const {
return mint(modinv(n,MOD));
}
};
/*
@brief mod int
@docs docs/modint.md
*/
#line 5 "test/SegmentTree.test.cpp"
constexpr int mod=998244353;
using modint=mint<mod>;
using PM=pair<modint,modint>;
auto f=[](modint a,modint b,int sz)->modint{return a+b;};
auto g=[](modint a,PM b,int sz)->modint{return a*b.first+b.second*modint(sz);};
auto h=[](PM a,PM b,int sz)->PM{return PM(a.first*b.first,a.second*b.first+b.second);};
int main(){
cin.tie(0);ios::sync_with_stdio(false);
int N,Q;
cin>>N>>Q;
Segtree<modint,PM,f,g,h>segtree(N,0,PM(1,0));
rep(i,N){
int a;cin>>a;
segtree.update(i,i+1,PM(1,a));
}
while(Q--){
int t;cin>>t;
if(!t){
int l,r,b,c;cin>>l>>r>>b>>c;
segtree.update(l,r,PM(b,c));
}else {
int l,r;cin>>l>>r;
cout<<segtree.query(l,r)<<"\n";
}
}
}